

Droplet moving over a sharp transition of wettability on the hydrophobic surface

Hongyu Zhao 04/12/2018

The University of Edinburgh

Background

Hydrophobic surface

MacGregor-Ramiasa MN, Vasilev K. Advanced Materials Interfaces. 2017 Aug;4(16):1700381.

Gradient: chemical(above) or roughness (below)

Gradient Less hydrophobic

microfluidic system Accuracy Avoid Interference

> Drop-wise Efficiency

Left Interface Right

9 kinds of surface units $\frac{9*8}{2} = 36$ combinations

The University of Edinburgh

Methodology

Motion analysis

Horizontal 'drift' — mass centre

Driving Force: $F_d = \gamma R (\cos \theta_{eq}^R - \cos \theta_{eq}^L)$ Resistance: $f_v \sim \beta V$ f_f $f_h \sim \theta_{ad}^L, \theta_{re}^L, \theta_{ad}^R, \theta_{re}^R$

Damped Oscillation

Motion activation

More than superposition

 $Drift \leftrightarrows Oscillation$

Motion analysis

Volume and Height

Motion Criterion

Overall cases: motion distance

 $\Delta \varphi = \varphi_R - \varphi_L$

Driving force Caused by gradient $F_d = \gamma (\cos \theta_{eq}^R - \cos \theta_{eq}^L)$ $= \gamma (1 + \cos \theta_Y) \Delta \phi$

$$\overline{\phi} = \frac{(\phi_R + \phi_L)}{2}$$
Resistance

Friction and hysteresis 'sliding' and 'static' friction force

 $F_r:f_f$, $f_h{\sim}\overline{oldsymbol{arphi}}$

Criterion: α

Overall cases: motion distance

$$\alpha = \frac{2(\varphi_R - \varphi_L)}{\varphi_R + \varphi_L} = \frac{\Delta \varphi}{\overline{\varphi}} = \frac{F_d}{F_r}$$

Driving force

$$F_d = \gamma(\cos\theta_R - \cos\theta_L) = \gamma(1 + \cos\theta_Y)\Delta\phi$$

Resistance Friction and hysteresis

 $F_r \sim \overline{\varphi}$

Criterion: α

$$\alpha = \frac{2(\varphi_R - \varphi_L)}{\varphi_R + \varphi_L} = \frac{\Delta \varphi}{\overline{\varphi}} = \frac{F_d}{F_r}$$

Conclusion

Single motion analysis:

Coupling of two motion behaviors Analogy method: spring model

Overall cases:

Volume has little influence Increase with We at a small range A criterion combining F_d and F_r

Fundamental understanding Beneficial for Microfluidic device design

Thank you for your attention!