

Steering fluid motion with gradient substrates

Panagiotis (Panos) Theodorakis Institute of Physics – Polish Academy of Sciences

Steering fluid motion with gradient substrates

THE JOURNAL OF CHEMICAL PHYSICS 146, 244705 (2017)

Stiffness-guided motion of a droplet on a solid substrate

Panagiotis E. Theodorakis,^{1,a)} Sergei A. Egorov,^{2,3,b)} and Andrey Milchev^{4,c)}

Thermotaxis

Wettability gradient

Durotaxis (Experiment)

1. Droplets move from stiff to soft regions of the substrate!

2. Larger droplets \Rightarrow better durotaxis!

Durotaxis (simulation)

Our model

Parameters to consider:

- \circ The stiffness gradient
- Affinity of droplet to the substrate
 MolecelearsDynamics Simulations
 (La/ingevair/Théhmostale)t

Effect of the stiffness gradient and the substrate wettability

Larger gradient \Rightarrow better durotaxis for all substrate – droplet affinities (tuned by ε_{sp})

Higher affinity between the substrate and the droplet \Rightarrow better durotaxis for all substrate – droplet affinities (tuned by ε_{sp})

Instant velocity during durotaxis

- Local velocity during durotaxis isn't linearly correlated with the stiffness gradient
- Droplet diffusion due to thermal fluctuations affect the durotaxial motion of the droplet

Driving force of durotaxis

show that the driving stiffness gradient

Comparison between durota force of durotaxis is the grading dE_{Sp}

dx

direction,

No intertial movement

No indication of inertial movement, carpet motion, etc.

Effect of droplet size

Smaller droplet \Rightarrow better durotaxis for all droplet - substrate affinities up to a threshold value

Effect of droplet viscosity

Higher visosity \Rightarrow worse efficiency of durotaxis

Larger droplets \Rightarrow larger the role of viscosity

Effect of droplet size

Conclusions - Durotaxis

- Droplets move spontaneously from softer to stiffer parts of the substrate
- Durotaxis is enhanced with increasing stiffness gradient
- Durotaxis is enhanced for smaller droplets
- Durotaxis is enhanced for droplets of smaller viscosity
- Durotaxis is enhanced for higher wettability of the substrate

Acknowledgements

Durotaxis Project

Sergei Egorov @ University of Virginia

@ Bulgarian Academy of Sciences

Thanks to you

Thank you for your attention

Discussion

