

Evaporation of sessile drops on flexible membranes with capillary origami

Yuhong Chen^{1,*}, Daniel Orejon¹, Prashant Valluri¹, Vasileios Koutsos², Khellil Sefiane¹

- 1. Institute for Multiscale Thermofluids, School of Engineering, the University of Edinburgh, King's Buildings, Edinburgh, EH9 3JL, UK.
- 2. Institute for Materials and Processes, School of Engineering, the University of Edinburgh, King's Buildings, Edinburgh, EH9 3FB, UK.
- * presenter: Yuhong.chen@ed.ac.uk

Artistic origami

Fabrication at micro/nano scale

Scientific/ industrial origami

Capillary origami

Evaporation with origami

Experimental set-up

Experimental conditions:

Drop liquid	Membrane size, mm		Drop mass, mg		Temperature, °C		Vapor concentration,%		
Water	2×2		4.5 <u>±</u> 0.2		22 <u>±</u> 1.2		$H = 44 \pm 4$		
Ethanol	4×4		4.0±0.3		22 <u>+</u> 1.2		0		
Spinning speed, <i>w</i> /rpm		500		1000	1250	1500	1750	2000	
Thickness of PDMS, $h/\mu{ m m}$		180		71	48	40	36	30	4
$B = Eh^3/12 \ ($	$(1 - \vartheta^2)$	_	Decreasing bending stiffness						

Fabrication of PDMS membranes

Water drops

> Water drops

OTIVATION 💙 EXP. SET

Ethanol drops

Instantaneous complete folding

Folding process of flexible membranes (top view)

Instantaneous complete folding

Progressive folding VS. instantaneous folding

Conclusions:

- ✓ The evaporation state of a drop depends on the folding of flexible membrane. The classical drop evaporation can transit to the evaporation of meniscus of different shapes.
- ✓ The average evaporation rate of drop decreases with the folding extent of flexible membrane.
- ✓ The wettability of liquids mainly determines the folding speed of flexible membrane when capillary origami can occur.

Future work:

To analyze the dependence of instanenous evaporation rate of drop in different evaporation states on the folding extent of membranes.

Questions:

- What is deposition pattern after drops containing particles dry on the folding membrane?
- How to make use of such particle deposition in 3D fabrication?

