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Lennon Ó Náraigh 1, Daniel R. Jansen van Vuuren 1,2, Mohsen Sharifpur 2

1School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
1School of Engineering, University of Pretoria, cnr Lynnwood Road and Roper Street, Hatfield, Pretoria

South Africa

December 3, 2019

Heat Transfer and Multiphase Flow December 3, 2019 1 / 22



Introduction

In this talk, we look at two separate problems in the modelling and simulation of
both single-phase and multiphase flow involving heat transfer. We bring new
methodologies to bear on these problems:

Theoretical modelling of evaporating sessile droplets (multiphase)

Numerical modelling of heat and momentum transfer in particle-laden
channel flows (single phase)
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Evaporating Sessile Droplets – Context

Droplet Locally heated at
hotspot;

Evaporation into surrounding
atmosphere;

Marangoni effect induces
vortices in droplet.

Marangoni effect predicted in
pure water but was only
recently confirmed
experimentally (contaminants).
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Evaporating Sessile Droplets – Modelling Problem

Figure from Askounis et al., Langumuir,
2017:

Droplet heated at hotspot with laser
– constant heat fluix.

Symmetric temperature
distribution emerges.

After some time, convection sets in.

Convection happens fast, then
evaporation n a much slower
timescale.

Vortices move around in the droplet
in a dynamic fashion, suggesting
non-linear behaviour.
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Modelling Assumptions

The aim of the research is to develop a theoretical model for predicting the onset
of the convection. As such, the following simplifying assumptions can be made:

Convection sets in long before evaporation starts – assume droplet keeps its
shape in the model.

Equilibrium contact angle θ ≈ 110◦ – treat as hemispherical in the model.

Idea – develop a temperature distribution for the case without convection –
base state.

Treat the onset of convection as a small-amplitude perturbation and develop
a linear stability analysis of the system.

Further assumptions are required for the boundary conditions.
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Boundary Conditions

One-sided model – treat only what happens inside liquid phase.
Gas phase parametrized by Newton’s Law of Cooling, and hence, a Robin
boundary condition at r = R:

k(∂T/∂r) = ht(T − Ta),

where T is the droplet temperature, k is the thermal conductivity, ht is the
coefficient in Newton’s Law of Cooling, and Ta is the ambient gas
temperature.
Neumann / Dirichlet conditions are applied at z = 0, as appropriate.

Boundary conditions at z = 0 left slightly vague – up for discussion.
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Base State

The base state describes what happens in the absence of flow. It should be the
solution to the diffusion equation

∂T∗
∂t

= ∇2T∗, in the hemisphere,

subject to the appropriate boundary conditions at the substrate. The choice of
boundary conditions is crucial.

Realistic boundary conditions at z = 0, e.g. k(∂T/∂z) = f(r);

Here, f(r) is the source function which depends on the laser power (e.g.
Gaussian)

Then, T∗ is not radially symmetric but instead depends on both r and z:
T∗ = T∗(r, z) – agrees with experimental observations.

We have also investigated a radially symmetric solution with T∗ → T∗(r).

For now we leave the T∗ unspecified and outline the linear stability analysis in
broad terms.
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Fluid Dynamics
Beyond the base state, we introduce the Navier–Stokes equations for viscous
incompressible flow:

ρ0

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u− ρ0g [1− α(T − Ta)] ẑ,

Work in Bousinesseq limit, where ρ0 denotes a constant reference density;
also, µ is the viscosity.
We locally use α to denote the coeffcient of thermal expansion.
Calculations suggest Ma� Ra (defined later); hence, buoyancy term can be
dropped.

Equations of motion simplify (and supplemented by incompressibility):

ρ0

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u− ρ0gẑ,

∇ · u = 0

(we henceforth drop the subscript on the density, for consistency). Finally,
introduce advection-diffusion equation for the temperature:

ρCp

(
∂T

∂t
+ u · ∇T

)
= k∇2T.
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Fluid Dynamics – Boundary Conditions
No slip: u = 0 at z = 0.
No mass flux at interface (evaporation suppressed at short times) – radial
velocity condition: ur = 0 at r = R.
Also, Marangoni stress condition at the interface, since the surface tension is
a function of temperature:

σ = σ0 − γ (T − Ta) .

Effective vorticity source:

µr̂ ·
(
∇u+∇uT

)
· θ̂ = − γ

R

∂T

∂θ
,

µr̂ ·
(
∇u+∇uT

)
· ϕ̂ = − γ

R sin θ

∂T

∂ϕ
.

With ur = 0 at r = R, these equations simplify:

µ
∂

∂r

(uθ
r

) ∣∣∣∣
r=R

= − γ

R2

∂T

∂θ

∣∣∣∣
r=R

,

µ
∂

∂r

(uϕ
r

) ∣∣∣∣
r=R

= − γ

R2 sin θ

∂T

∂ϕ
.
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Linear Stability Analysis and Key Boundary Condition

We introduce solutions of the Navier–Stokes equations which are a small
perturbation around the base state.

Fluid velocities are assumed to have a small amplitude;

Temperature distribution given by

T = T∗(r, θ, t)︸ ︷︷ ︸
Base State

+δT (r, θ, ϕ, t).

If the model for T∗ has a Neumann boundary condition at the substrate, (i.e.
k∂T∗/∂z = f(r)), then δT should also have a Neumann boundary condition at
the substrate – a homogeneous one, ∂zδT = 0.
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Linearized Equations of Motion

In linear stability, the term u · ∇u is omitted from the equations of motion.

We assume that T∗ varies very slowly, such that ∂T∗/∂t is ignored.

By acting repeatedly on the resulting equations with the curl operator, we
therefore obtain (following Ha and Lai, Proc. Lond. Roy. Soc. A, 2000):

∇2
(
ν∇2 − ∂t

)
(rur) = 0,

(κ∇2 − ∂t)δT = ur(∂T∗/∂z) + uθ(∂T∗/∂θ),

where κ = k/(ρCp) is the thermal diffusivity of the water.

Boundary conditions at r = R simplify (Ha and Li):

∂2

∂r2
(rur)−

2 +∇2
Ω

r2
(rur) =

γ

r
∇2

ΩδT,

−k∂rδT = htδT,

ur = 0.

Here, ∇2
Ω is the Laplace–Beltrami operator on the sphere.
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Linear Stability Analysis
We work at criticality such that ∂t = 0. The aim of the remaining analysis (still to
be done) is to solve

∇4(rur) = 0,

∇2δT = ur(∂T∗/∂z) + uθ(∂T∗/∂θ),

subject to the given boundary conditions.

By analogy to a prior study with T∗ radially symmetric, we expect this to
yield a solvability condition.
Hence, we expect a consistent solution to these equations exist only for a
critical value of γ dependent on the base-state temperature T∗:

Ma =
γR[Q/(2πk)]

κµ
= Φ(〈T∗〉),

Here, Φ(〈T∗〉) is to be determined, and the angle brackets denote averaging
over space.

We expect the time-dependence to enter via Macrit = Φ(〈T∗〉), where T∗
depends weakly on time.

Heat Transfer and Multiphase Flow December 3, 2019 12 / 22



Linear Stability Analysis
We work at criticality such that ∂t = 0. The aim of the remaining analysis (still to
be done) is to solve

∇4(rur) = 0,

∇2δT = ur(∂T∗/∂z) + uθ(∂T∗/∂θ),

subject to the given boundary conditions.

By analogy to a prior study with T∗ radially symmetric, we expect this to
yield a solvability condition.
Hence, we expect a consistent solution to these equations exist only for a
critical value of γ dependent on the base-state temperature T∗:

Ma =
γR[Q/(2πk)]

κµ
= Φ(〈T∗〉),

Here, Φ(〈T∗〉) is to be determined, and the angle brackets denote averaging
over space.

We expect the time-dependence to enter via Macrit = Φ(〈T∗〉), where T∗
depends weakly on time.

Heat Transfer and Multiphase Flow December 3, 2019 12 / 22



Linear Stability Analysis
We work at criticality such that ∂t = 0. The aim of the remaining analysis (still to
be done) is to solve

∇4(rur) = 0,

∇2δT = ur(∂T∗/∂z) + uθ(∂T∗/∂θ),

subject to the given boundary conditions.

By analogy to a prior study with T∗ radially symmetric, we expect this to
yield a solvability condition.
Hence, we expect a consistent solution to these equations exist only for a
critical value of γ dependent on the base-state temperature T∗:

Ma =
γR[Q/(2πk)]

κµ
= Φ(〈T∗〉),

Here, Φ(〈T∗〉) is to be determined, and the angle brackets denote averaging
over space.

We expect the time-dependence to enter via Macrit = Φ(〈T∗〉), where T∗
depends weakly on time.

Heat Transfer and Multiphase Flow December 3, 2019 12 / 22



Graphical representation of the criterion for onset of
convection
The idea will be to solve the PDEs numerically and obtain Macrit(τ) = Φ(〈T∗〉),
where the time dependence enters via 〈T∗〉, and where τ = κt/R2.
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Analytical progress
Analytical progress depends on finding a ‘reasonable’ shape for the base state
T∗(z, r, t). Simulation of ∂tT∗ = ∇2T∗ will help here, e.g.
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Part 2. Particle-laden channel flows
In this part of the talk we outline tentative work in the modelling and simulation
of particles in channel flows:

We take an existing parallel flow solver (S-TPLS) and we sequentially add:

Immersed boundary capabilities to simulate particles (currently only
stationary particles);
Advection-diffusion equation (with immersed boundary method) to model
heat transfer

We use ANSYS-Fluent for validation purposes; using S-TPLS for modelling
purposes has advantages (e.g. scalability in future high-resolution studies).
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S-TPLS – overview

S-TPLS is a stripped-down version of an in-house two-phase solver; S-TPLS
is single-phase.

S-TPLS solves the incompressible Navier–Stokes equation in a channel, using
a finite-volume spatial discretization.

Marker-and-cell spatial discretization: pressures and other scalar quantities at
cell centres, velocities at cell faces.

Finite-volumes, with flux-conservative differencing for the momentum
equation.

Momentum step: centred differences for the convective derivative,
Crank–Nicolson treatment for the diffusion, third-order Adams–Bashforth for
the time evolution.

Projection method: Momenta are updated first, followed by a correction step
involving a pressure update, thereby enforcing incompressibility.

Code is written in Fortran90 and parallelized using MPI; parallelization
scheme takes account of problem geometry (2D domain decomposition)
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Immersed boundary method
We use the method of Kajishima et al. (2001) to introduce the solid phase: a
solid-body volume fraction is α is introduced, such that

α(x) =

{
1, if x is in the solid phase,

0, if x is in the fluid phase,
note change in use of α !

with α(x) transitioning smoothly between the two extreme values.

At the end of the pressure-correction step, the updated velocity is un+1; this
updated velocity is modified further: to enforce u = 0 in the solid phase:

umodified = un+1 − αun+1

This is a simple and robust method and gives good results for stationary
particles.
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Validation I
We validate the method by computing the total drag past the cylinder, as a
function of Reynolds number Re∗.

The drag coefficient CD is computed
from:

CD =
1

ρU2

∫
Ω

(−pnx) |∇α|d2x

+
1

ρU2

∫
Ω

(τxxnx + τxznz) |∇α|d2x,

where

τij =
1

Re∗

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Here, nx and nz are obtainable from the solid volume fraction:

(nx, nz) = ∇α/|∇α| |∇α| proportional to delta function;

also, U is the mean inlet velocity.
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Validation II
We also look at the critical Reynolds number for the onset of recirculation in the
cylinder wake (classical problem; depends closely on inlet boundary conditions).
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With Advection-Diffusion

We also look at modelling heat transfer by adding the advection-diffusion
equation to S-TPLS:

∂T

∂t
+ u · ∇T =

1

Pe
∇2T.

Periodic boundary conditions in x-direction.

Temperature gradient in wall-normal direction.

Numerical solution via Crank–Nicolson method.

Addition of particles: once Tn+1 is obtained via Crank-Nicolson, temperature
is modified to account for the fixed temperature in the particles:

Tmodified = Tn+1 + α
(
Tparticle − Tn+1

)
.

Quantify enhancement to heat transfer from particles via Nusselt number:

Nu =
L−1
x

∫
Ω

(1− α)
(
wT − Pe−1 ∂T

∂z

)
d2x

Pe−1(Tbottom − Ttop)
.
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Sample Results

Quick check: S-TPLS preserves the constant stratification
T = Tbottom + (Ttop − Tbottom)(z/Lz) in the absence of particles.

Currently no buoyancy term in momentum equation; this will be added soon.

We have also looked at one particle, with normalized temperature values
Tbottom = 1, Ttop = 0.1, and Tparticle = 0.

We are also looking at flow / temperature distributions past arrays of
particles.
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Conclusions

In Part 1 we have:

Looked at the problem of the onset of Marangoni convection in a locally
heated sessile droplet.

Formulated the linear stability analysis up to the point where the base state
needs to be specified in concrete terms.

Outlined how this approach can predict the critical time for the onset of
Marangoni convection.

In Part 2 we have:

Added solid bodies to the S-TPLS highly parallelized single-phase
channel-flow solver.

Added a temperature equation to model heat transfer

Outlined how enhancement to heat transfer can be quantified via the
Nusselt number

Invite suggestions for which systems to look at next.
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