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Background

• In recent years, there has been an explosion of interest in
many different aspects of single evaporating sessile droplets.

• However, there has been relatively little work on the
interactions between multiple droplets.

• However, previous experimental and theoretical studies (e.g.
Lacasta et al. 1998, Schäfle et al. 1998, Kokalj et al. 2010,
Sokuler et al. 2010, Carrier et al. 2016, Castanet et al. 2016,
Shaikeea et al. 2016, Hatte et al. 2019, Khilifi et al. 2019)
and work on closely related problems (e.g. Laghezza et al.
2016, Michelin et al. 2018) have shown the occurrence of
shielding due to the presence of other droplets.

• In this talk we describe two different approaches to this
problem, exact solutions for one and two thin droplets in
two dimensions, and an asymptotic solution for thin
droplets in three dimensions.
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Lacasta et al. 1998, Schäfle et al. 1998, Kokalj et al. 2010,
Sokuler et al. 2010, Carrier et al. 2016, Castanet et al. 2016,
Shaikeea et al. 2016, Hatte et al. 2019, Khilifi et al. 2019)
and work on closely related problems (e.g. Laghezza et al.
2016, Michelin et al. 2018) have shown the occurrence of
shielding due to the presence of other droplets.

• In this talk we describe two different approaches to this
problem, exact solutions for one and two thin droplets in
two dimensions, and an asymptotic solution for thin
droplets in three dimensions.



Background

• In recent years, there has been an explosion of interest in
many different aspects of single evaporating sessile droplets.

• However, there has been relatively little work on the
interactions between multiple droplets.

• However, previous experimental and theoretical studies (e.g.
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The Diffusion-Limited Model
• The vapour concentration c satisfies ∇2c = 0 subject to
c → c∞ far from the droplet(s),

c = csat on the droplet(s), and

J = −D ∂c
∂n

= 0 on the substrate.

• Assuming that the droplet(s) are sufficiently small, they have
quasi-static profile

θ

2
(R2 − x2) with area

2θR2

3
in two dimensions, and

θ

2
(R2 − r2) with volume

πθR3

4
in three dimensions.

• The evolution of the droplet(s) satisfies

d

dt
(area or volume of droplet) = −1

ρ

∫
surface area

J dS .
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Part 1:

Exact solutions for one and two thin droplets in two
dimensions

Schofield, Wray, Pritchard and Wilson,
“The shielding effect extends the lifetimes of two-dimensional

sessile droplets”, to appear in J. Eng. Math. (2020)



No Solution in an Infinite Domain

• The work of Sneddon (1966) shows that, unlike in three
dimensions, there is no solution satisfying the far-field
condition c → 0 as x2 + y2 →∞.

• We therefore relax the problem slightly and impose the
condition c = 0 at a large but finite boundary.

• We solve the problem numerically in a semi-circular domain,
and analytically using complex-variable theory in a
semi-elliptical domain.
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Exact Solution of the One-Droplet Problem

The exact solution in the semi-ellipse is

c(x , y) = 1− 1

arcsinh (Ψ/R)
=
[
arccos

(
− z

R

)]
,

and hence

J(x) = −∂c
∂y

(x , 0) =
1

arcsinh (Ψ/R)

1√
R2 − x2

for |x | < R.



Numerical Validation



Evolution of the Droplet

• The evolution, and hence the lifetime, of the droplet depends
on the mode of evaporation.

• We consider constant radius (CR), constant angle (CA),
and slick-slide (SS) modes.
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Constant Radius (CR) Mode

R(t) ≡ 1, θ(t) = 1− 3π

2arcsinhΨ
t, A(t) =

2

3

[
1− 3π

2arcsinhΨ
t

]
Lifetime of droplet

tCR =
2

3π
arcsinhΨ



Constant Angle (CA) Mode

t =
2

3π

[
arcsinhΨ− R2(t)arcsinh

(
Ψ

R(t)

)
+ Ψ

(√
Ψ2 + 1−

√
Ψ2 + R2(t)

)]
,

θ(t) ≡ 1, A(t) =
2R2(t)

3

Lifetime of droplet

tCA =
2

3π

[
arcsinhΨ + Ψ

(√
Ψ2 + 1−Ψ

)]



CR and CA Modes



Stick-Slide (SS) Mode

In the pinned phase 0 < t < t∗ droplet is in the CR mode,

t∗ =
2(1− θ∗)arcsinhΨ

3π
,

while in the slide phase t∗ < t < tSS,

t = t∗ +
2θ∗

3π

[
arcsinhΨ− R2(t)arcsinh

(
Ψ

R(t)

)

+ Ψ

(√
Ψ2 + 1−

√
Ψ2 + R2(t)

)]
.

Lifetime of droplet

tSS =
2

3π

[
arcsinhΨ + θ∗Ψ

(√
Ψ2 + 1−Ψ

)]



SS Mode



Asymptotic Limit of a Large Domain, Ψ� R

tCR =
2

3π
ln(2Ψ) + O

(
1

Ψ2

)
tCA =

2

3π
ln(2Ψ) +

1

3π
+ O

(
1

Ψ2

)
tSS =

2

3π
ln(2Ψ) +

θ∗

3π
+ O

(
1

Ψ2

)



Exact Solution of the Two-Droplet Problem

The exact solution is

c(η, ξ) = 1− 1

arcsinh
(

Ψ/
√

Ω2 − I 2
)=

arccos

−
√
ζ2 − I 2

Ω2 − I 2

 ,
and hence

J(η) = −∂c
∂ξ

(η, 0) =
1

arcsinh
(

Ψ/
√

Ω2 − I 2
) η√

Ω2 − η2
√
η2 − I 2

.
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Numerical Validation



Exact Solution for Vapour Concentration



Evolution of the Droplets

In the two-droplet problem, there is a much richer variety of
possible behaviours, including

• constant-inner-and-outer-contact-line (CIO) mode,

• constant-angle-centred (CAC) mode,

• constant-angle and constant-inner-contact-lines (CAI) mode,

• constant-angle and constant-outer-contact-line (CAO) mode.
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CIO Mode

θ(t) = 1− 3π

4arcsinh

(
Ψ/
√

Ω2
0 − I 2

0

) t,

A =
(Ω0 − I0)2

6

1− 3π

4arcsinh

(
Ψ/
√

Ω2
0 − I 2

0

) t


Lifetime of a pair of droplets

tCIO =

4arcsinh

(
Ψ/
√

Ω2
0 − I 2

0

)
3π



CIO Mode



CAC, CAI and CAO Modes



CAC, CAI and CAO Modes



Asymptotic Limit of a Large Domain, I0 � 1� Ψ

tCIO =
4

3π
ln(Ψ) − 2I0

3π
+O

(
I0

2,
1

Ψ2

)
tCAC =

4

3π
ln(Ψ) +

1

3π
− 2I0

3π
+O

(
I0

2,
1

Ψ2

)
tCAI =

4

3π
ln(Ψ) +

2

3π
− 4I0

3π
+O

(
I0

2 log I0,
1

Ψ2

)
tCAO =

4

3π
ln(Ψ) +

2

π

(
1− 4

3
ln 2

)
+

4I0
3π

(1− 2 ln 2)+O

(
I0

2,
1

Ψ2

)



Asymptotic Limit of a Large Domain, 1� I0 � Ψ

tCIO =
4

3π
ln

(
Ψ√
I0

)
− 2

3πI0
+ O

(
1

I 2
0

,
I0

Ψ2

)
tCAC =

4

3π
ln

(
Ψ√
I0

)
+

1

3π
− 2

3πI0
+ O

(
1

I 2
0

,
I0

Ψ2

)
tCAI =

4

3π
ln

(
Ψ√
I0

)
+

1

3π
− 4

9πI0
+ O

(
1

I 2
0

,
I0

Ψ2

)
tCAO =

4

3π
ln

(
Ψ√
I0

)
+

1

3π
− 8

9πI0
+ O

(
1

I 2
0

,
I0

Ψ2

)



Comparison Between Lifetimes

• Single droplet:

t̂single ∼
2

3π
ln

(
2Ψ̂

R̂0

)
T̂ where T̂ =

ρ̂θ̂0R̂
2
0

D̂(ĉsat − ĉ∞)

• Pair of droplets with same surface area:

t̂area ∼
1

3π
ln

(
2Ψ̂

R̂0

)
T̂ ∼ t̂single

2

• Closely spaced pair of droplets with same cross-sectional area:

t̂close ∼
2

3π

[
ln

(
2Ψ̂

R̂0

)
− 1

2
ln 2

]
T̂

• Widely separated pair of droplets with same cross-sectional
area:

t̂wide ∼
2

3π

[
ln

(
2Ψ̂

R̂0

)
− 1

2
ln

(
23/2 Î0

R̂0

)]
T̂
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Conclusions for Part 1

• In two-dimensions the “natural” problem has no solution, but
we can obtain exact solutions to a suitably relaxed version of
the problem.

• The lifetimes of the droplet(s) depend logarithmically on the
size of the domain, and more weakly on the mode of
evaporation and the separation between the droplets.

• The solutions allow us to quantify the shielding effects the
droplets have on each other and, in particular, how they
extend the lifetime of the droplets.

• But remember that this is for a slightly artificial
two-dimensional problem . . . hence motivating Part 2 of this
talk on the three-dimensional problem!
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Part 2:

An asymptotic solution for thin droplets in three dimensions

Wray, Duffy and Wilson,
“Competitive evaporation of multiple sessile droplets”,

to appear in J. Fluid Mech. (2020)



Formulation

Consider N thin droplets on the substrate z = 0 whose surfaces Sk
have radii ak and centres (xk , yk) for k = 1, 2, . . . ,N with local
fluxes Jk and integral fluxes Fk .

Sk

ak

an

ψk,n

Ψ ′
n

rk,n
Sn

R′
n

(xk, yk)

(xn, yn)
ρ′

φ′



Solution

Using a series of integral transformations, Fabrikant (1985) showed
that

Jk = J0

1− 1

2π

N∑
n=1,
n 6=k

∫∫
Sn

√
ρ′2 − a2

k Jn(ρ′, φ′) ρ′dρ′ dφ′

ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)


for k = 1, 2, . . . ,N, where

J0 =
2

π
√
a2
k − ρ2

is the flux from the kth droplet in isolation.



The integral flux from the kth droplet (i.e. the integral of Jk over
Sk), denoted by

Fk =

∫∫
Sk

Jk(ρ, φ) ρdρdφ,

is given by

Fk = 4ak −
2

π

N∑
n=1,
n 6=k

∫∫
Sn

Jn
(
ρ′, φ′

)
arcsin

(
ak
ρ′

)
ρ′ dρ′dφ′

for k = 1, 2, . . . ,N.



• Our goal is to derive explicit expressions for the fluxes Jk in
the asymptotic limit of well-separated droplets.

• If the radius of each droplet ak is small relative to the distance
between the centre of that droplet and any other than

Fk = 4ak −
2

π

N∑
n=1,
n 6=k

Fn arcsin

(
ak
rk,n

)
for k = 1, 2, . . . ,N.

• This is a set of N linear algebraic equations for the Fk which
may be solved exactly for any given configuration of droplets.
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• Similarly,

Jk = J0

1− 1

2π

N∑
n=1,
n 6=k

Fn
√
r2
k,n − a2

k

ρ2 + r2
k,n − 2ρrk,n cos(φ− ψk,n)


for k = 1, 2, . . . ,N.

• With the integral fluxes Fk determined, this gives the fluxes
Jk explicitly.

• We now analyse one particular configuration, namely a pair of
identical droplets.
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A Pair of Identical Droplets

• Consider a pair of identical droplets with the same radii
a1 = a2 = a and centres a distance b (> 2a) apart located at
(−b/2, 0) and (b/2, 0).

• The droplets have the same integral flux F1 = F2 = F given by

F =
4a

1 + 2
π arcsin a

b

.

• The flux from the droplet centred at (−b/2, 0) is

J1 = J0

[
1− F

√
b2 − a2

2π (ρ2 + b2 − 2ρb cosφ)

]
,

with a corresponding expression for the other droplet.
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Numerical Validation

Exact and asymptotic solutions for F .
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Evolutions and Lifetimes

Scale and non-dimensionalise according to

θk = θrefθ̂k , hk = arefθrefĥk , Vk = a3
refθrefV̂k , t =

ρfluida
2
refθref

D (csat − c∞)
t̂.

For sufficiently small droplets

hk =
akθk

2

(
1− ρ2

a2
k

)
, Vk = 2π

∫ ak

0
hk ρ dρ =

πa3
kθk
4

.



Evolutions and Lifetimes

Evolution of ak = ak(t) and/or θk = θk(t) and Vk = Vk(t)
satisfies

d

dt

(
a3
kθk
)

= −4Fk
π
.

For a pair of identical droplets with radii a = a(t), contact angle
θ = θ(t) and volume V = V (t) this gives

d

dt

(
a3θ
)

= − 16a

π
(
1 + 2

π arcsin a
b

) .



Constant Radius (CR) Mode

Setting a ≡ ā gives

dθ

dt
= − 16

πā2
(
1 + 2

π arcsin ā
b

) ,
and hence

θ = θ̄ − 16t

πā2
(
1 + 2

π arcsin ā
b

) , V =
πā3θ̄

4
− 4āt

1 + 2
π arcsin ā

b

.

In particular, the lifetime of the droplets in the CR mode is

tCR = tCR∞

(
1 +

2

π
arcsin

ā

b

)
,

where tCR∞ = πā2θ̄/16 is the lifetime of the droplets in isolation.



Constant Angle (CA) Mode

Setting θ ≡ θ̄ gives

da

dt
= − 16

3πaθ̄
(
1 + 2

π arcsin a
b

) ,
and hence V = πa3θ̄/4 and

t =
3πθ̄

32

[
â2 +

1

π

{
â
√
b2 − â2 −

(
b2 − 2â2

)
arcsin

â

b

}]â=ā

â=a

.

In particular, the lifetime of the droplets in the CA mode is

tCA = tCA∞

[
1 +

1

π

{√
b2

ā2
− 1−

(
b2

ā2
− 2

)
arcsin

ā

b

}]
,

where tCA∞ = 3πā2θ̄/32 is the lifetime of droplets in isolation.



Stick-Slide (SS) Mode

A CR phase with a ≡ ā is followed by a CA phase with θ ≡ θ?.

In particular, the lifetime of the droplets in the SS mode is

tSS =

[
1 +

(
2ā2

(
2θ̄ + θ?

)
− 3b2θ?

)
arcsin(ā/b) + 3āθ?

√
b2 − ā2

πā2
(
2θ̄ + θ?

) ]
tSS∞,

where tSS∞ = πā2(2θ̄ + θ∗)/32 is the lifetime of droplets in
isolation.



Droplet Lifetimes

Lifetimes of a pair of droplets evaporating in the CR, CA and SS
modes.



Radially Integrated Flux

The radially integrated flux from the kth droplet is given by

Rk =

∫ ak

0
Jk(ρ, φ) ρ dρ,

and for a pair of identical droplets

R1 = R0

1− F
√

1− k2

2πa sinφ
I

 log
[
−
(
ke−iφ +

√
k2e−2iφ − 1

)]
√
k2e−2iφ − 1


 ,

where k = a/b and R0 = 2a/π is the radially integrated flux from
an isolated droplet.



Radially Integrated Flux

Exact (solid) and approximate (dashed) radially integrated flux.



The Coffee-Ring Effect

• Saenz et al. (2017) showed that for a droplet containing
nanoparticles evaporating in the CR mode, the distribution of
the final residue is strongly related to the radially integrated
evaporative flux Rk .

• In particular, the radial directions with the greatest values of
Rk have the greatest fluid flux within the droplet, giving the
greatest concentration of residue at the contact line.

• Hence, a pair of identical droplets will give rise to
non-homogeneous coffee-rings, with least residue where the
contact lines are closest together and most residue where they
are furthest apart.
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Conclusions for Part 2

• We derived a system of linear equations for the Fk and explicit
expressions for the Jk in the asymptotic limit of well-separated
droplets.

• We obtained the explicit solution for a pair of identical
droplets.

• The method was found to perform well up to and including
the limit of touching droplets.

• The method was used to investigate the effect of shielding on
droplet evolutions and lifetimes, as well as on the coffee-ring
effect.

• The predictions of the model were in excellent agreement with
the experimental results of Khilifi et al. (2019).

• This same method can also be used to solve a wide variety of
more complicated configurations and modes of evaporation.
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