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Droplets are everywhere . ..

Q

DA



... but are rarely alone!
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In recent years, there has been an explosion of interest in
many different aspects of single evaporating sessile droplets.

However, there has been relatively little work on the
interactions between multiple droplets.

However, previous experimental and theoretical studies (e.g.
Lacasta et al. 1998, Schafle et al. 1998, Kokalj et al. 2010,
Sokuler et al. 2010, Carrier et al. 2016, Castanet et al. 2016,
Shaikeea et al. 2016, Hatte et al. 2019, Khilifi et al. 2019)
and work on closely related problems (e.g. Laghezza et al.
2016, Michelin et al. 2018) have shown the occurrence of
shielding due to the presence of other droplets.

In this talk we describe two different approaches to this
problem, exact solutions for one and two thin droplets in
two dimensions, and an asymptotic solution for thin
droplets in three dimensions.
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® The vapour concentration ¢ satisfies V2c = 0 subject to
€ — Coo far from the droplet(s),

€ = Gsat  on the droplet(s), and

J= —D% =0 on the substrate.
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e Assuming that the droplet(s) are sufficiently small, they have
quasi-static profile
2

0
§(R2 — x2)  with area in two dimensions, and

R3
g(,‘:\’2 —r?)  with volume 0

® The evolution of the droplet(s) satisfies

in three dimensions.

d 1
— (area or volume of droplet) = —/ Jds.
dt P Jsurface area



Part 1:

Exact solutions for one and two thin droplets in two
dimensions

Schofield, Wray, Pritchard and Wilson,
“The shielding effect extends the lifetimes of two-dimensional
sessile droplets”, to appear in J. Eng. Math. (2020)
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® \We solve the problem numerically in a semi-circular domain,
and analytically using complex-variable theory in a
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Exact Solution of the One-Droplet Problem

The exact solution in the semi-ellipse is

1 z
) - ]- - .—C\ |: (_7 :| 9
c(x.y) arcsinh (W/R) > [3°°° R>
and hence

9 oy 1 1
 arcsinh (W/R) /R2 — x2

for |x| <R.



Numerical Validation
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Evolution of the Droplet

® The evolution, and hence the lifetime, of the droplet depends
on the mode of evaporation.

® We consider constant radius (CR), constant angle (CA),
and slick-slide (SS) modes.



Constant Radius (CR) Mode
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Constant Angle (CA) Mode
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CR and CA Modes
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Stick-Slide (SS) Mode
In the pinned phase 0 < t < t* droplet is in the CR mode,

o 2(1 — 6*)arcsinh¥
B 3 ’

while in the slide phase t* < t < tsg,

*

t—t*+20
- 37

[arcsinh\U — R?(t)arcsinh (R\(Uﬂ)

+ v (m— w2 R2(t)>] .

Lifetime of droplet
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Asymptotic Limit of a Large Domain, ¥ > R
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Exact Solution of the Two-Droplet Problem
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The exact solution is
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Exact Solution for Vapour Concentration

c=055 g
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Evolution of the Droplets

In the two-droplet problem, there is a much richer variety of
possible behaviours, including

constant-inner-and-outer-contact-line (ClO) mode,
constant-angle-centred (CAC) mode,
constant-angle and constant-inner-contact-lines (CAI) mode,

constant-angle and constant-outer-contact-line (CAO) mode.



ClIO Mode
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Asymptotic Limit of a Large Domain, [y < 1 < V¥
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Asymptotic Limit of a Large Domain, 1 < [y < ¥
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Comparison Between Lifetimes
Single droplet:

R 2 (2] . A 500 R2
tsingle ~ 37 In (I%) T where T = é(,\M)OA)
0 Csat — Coo

Pair of droplets with same surface area:
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Closely spaced pair of droplets with same cross-sectional area:
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Conclusions for Part 1

In two-dimensions the “natural” problem has no solution, but
we can obtain exact solutions to a suitably relaxed version of
the problem.

The lifetimes of the droplet(s) depend logarithmically on the
size of the domain, and more weakly on the mode of
evaporation and the separation between the droplets.

The solutions allow us to quantify the shielding effects the
droplets have on each other and, in particular, how they
extend the lifetime of the droplets.

But remember that this is for a slightly artificial

two-dimensional problem ... hence motivating Part 2 of this
talk on the three-dimensional problem!



Part 2:
An asymptotic solution for thin droplets in three dimensions

Wray, Duffy and Wilson,
“Competitive evaporation of multiple sessile droplets”,
to appear in J. Fluid Mech. (2020)



Formulation

Consider N thin droplets on the substrate z = 0 whose surfaces Sy
have radii ax and centres (xx, yx) for k =1,2,..., N with local
fluxes Ji and integral fluxes Fy.




Solution

Using a series of integral transformations, Fabrikant (1985) showed

that
VP2 = @ In(p,8) el A

Je=Jo|1—- =
e 27rz//n p? + p'2 = 2pp cos(¢ — ¢')
n;ék

fork=1,2,..., N, where

is the flux from the k" droplet in isolation.



The integral flux from the k" droplet (i.e. the integral of J, over

Sk), denoted by
Fo= [ apo)pdpao,
Sk
is given by

Fk:4ak—Z// arcsm(p)pd’dd)
n;ék

for k=1,2,..., N.
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® QOur goal is to derive explicit expressions for the fluxes Jj in
the asymptotic limit of well-separated droplets.

® |f the radius of each droplet aj is small relative to the distance
between the centre of that droplet and any other than

Fk—4ak—*ZF arc&n(ik) for k=1,2,...,N.
n
n;ﬁk

® This is a set of N linear algebraic equations for the F; which
may be solved exactly for any given configuration of droplets.



® Similarly,

N F 2 32
1 n r, a
Jk _ JO 1t . . k,n k
2m ,,ZL P+ ri n — 2pri,n cos(¢ — Y,n)
n#£k

fork=1,2,...,N.
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® With the integral fluxes Fj determined, this gives the fluxes
Ji explicitly.



® Similarly,

N F r2 _ 22
1 ny\/ 'k, k
DY PR P
2m = p?> +rji , = 2pri,n cos(¢ — Vik,n)
n#£k

fork=1,2,...,N.

® With the integral fluxes Fj determined, this gives the fluxes
Ji explicitly.

® \We now analyse one particular configuration, namely a pair of
identical droplets.
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A Pair of Identical Droplets

e Consider a pair of identical droplets with the same radii
a; = a2 = a and centres a distance b (> 2a) apart located at
(—=b/2,0) and (b/2,0).
® The droplets have the same integral flux F; = F» = F given by
- 4a
B 1—|—%arcsin%'

® The flux from the droplet centred at (—b/2,0) is

Fvb2%2 — 32

27 (p? + b2 —2pbcos ) |’

h=Nh|1-

with a corresponding expression for the other droplet.
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Exact and asymptotic solutions for Jj.



Evolutions and Lifetimes

Scale and non-dimensionalise according to

0k = 0r6f9k7 hk = arefgrefhka

For sufficiently small droplets

2
m:wﬂﬁ_g)
2 ap

3 A~
Vk - areferefv/ﬂ

t =

Piluid @fOref ?
D (Csat - Coo)




Evolutions and Lifetimes

Evolution of ax = ak(t) and/or 6k = 6,(t) and Vi = Vi(t)

satisfies
d

G a0 = -2

For a pair of identical droplets with radii a = a(t), contact angle
6 = 0(t) and volume V = V/(t) this gives

16a
1+ %arcsin g) ’

d 3
a(a@):—ﬂ(




Constant Radius (CR) Mode

Setting a = 3 gives

o 16
dt 732 (1 + %arcsin %) ’
and hence
- 16t 730 43t
0=0-— 2 A v="00 2a -
ma (1 + < arcsin B) 4 1+ Zarcsin §

In particular, the lifetime of the droplets in the CR mode is

( 2 _ 5)
tcR = tCRoo | 1 + — arcsin — | |
T b

where tcro, = 77525/16 is the lifetime of the droplets in isolation.



Constant Angle (CA) Mode
Setting 0 = 0 gives

da 16
dt  3rah (1+ %arcsin 2)’

and hence V = 71a%0/4 and
7 1 311
t= "2 s/ — 2 (1 - 28) arcsin ° .
32 s b
In particular, the lifetime of the droplets in the CA mode is

1| /b2 b? 3
1+7r{ 52—1—<§2—2>arcsmb}],

where tca = 373%0/32 is the lifetime of droplets in isolation.

tca = tcaso




Stick-Slide (SS) Mode

A CR phase with a = 3 is followed by a CA phase with 8 = 6*.

In particular, the lifetime of the droplets in the SS mode is

(28 (2§ + 0*) — 3b%0*) arcsin(a/b) + 330*V/b2 — 32

fss = |1 73 (20 + 6%) "5500:

where tss., = 732(20 + 0*)/32 is the lifetime of droplets in
isolation.



Droplet Lifetimes

CA mode, #* =1

CR mode, 6* =0

10 20 30 b 40

Lifetimes of a pair of droplets evaporating in the CR, CA and SS

modes.



Radially Integrated Flux

The radially integrated flux from the k™ droplet is given by

ak
Rk:/o Jk(p, @) pdp,

and for a pair of identical droplets

FWI log [— (ke_i¢ + Vk2e=2i¢ — 1)}

Ri=Ry |1-—
1 0 2mwasin ¢ Vk2e=2i¢ — 1

where k = a/b and Ry = 2a/7 is the radially integrated flux from
an isolated droplet.



Radially Integrated Flux

o/
1/4 1/2 3/4 1

Exact (solid) and approximate (dashed) radially integrated flux.
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The Coffee-Ring Effect

® Saenz et al. (2017) showed that for a droplet containing
nanoparticles evaporating in the CR mode, the distribution of
the final residue is strongly related to the radially integrated
evaporative flux Ry.

® In particular, the radial directions with the greatest values of
Rk have the greatest fluid flux within the droplet, giving the
greatest concentration of residue at the contact line.

® Hence, a pair of identical droplets will give rise to
non-homogeneous coffee-rings, with least residue where the
contact lines are closest together and most residue where they
are furthest apart.
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Conclusions for Part 2

We derived a system of linear equations for the Fj, and explicit
expressions for the J in the asymptotic limit of well-separated
droplets.

We obtained the explicit solution for a pair of identical
droplets.

The method was found to perform well up to and including
the limit of touching droplets.

The method was used to investigate the effect of shielding on
droplet evolutions and lifetimes, as well as on the coffee-ring
effect.

The predictions of the model were in excellent agreement with
the experimental results of Khilifi et al. (2019).

This same method can also be used to solve a wide variety of
more complicated configurations and modes of evaporation.



Any questions?

Professor Stephen K. Wilson
Department of Mathematics and Statistics
University of Strathclyde, Glasgow
e-mail: s.k.wilson@strath.ac.uk, twitter: @S_K_Wilson



Volume 71, No. 1, September 2011 ISSN 0022-0833

Journal of Engineering Mathematics

COMPLEX FLOWS AND COMPLEX FLUIDS
Guest Editors: lan Frigaard, University of British Columbia, Canada;
John Billingham, The University of Nottingham, UK; Marcio Carvalho, Pontificia Universidade
Catdlica do Rio de Janeiro, Brazil and John Tsamopoulos, University of Patras, Greece

Ecitors-in-Chiof
Stophen K. Wiison and Thoras 2 Witslski
Honorary Editor
HK Kuiken

LS. MoElwain
Kibbin

@ Springer

DA



