

An Application OF Machine Learning in Multiphase Row Regime Identification

WIL Jones, Bin Hu University of Edinburgh, Row Capture AS 2-4 Dec 2019

Outline

- About Flow Capture
- Introduction to multiphase flow
- Uses of machine learning
- Result and discussion
- Summary

About Flow Capture®

- Founded in 2013
 - Based in Norway and Germany
 - Specialised in flow measurements and X-rays
- Committed to delivering an turn-key solution to oil and gas industry
 - Highly integrated system
- Advanced technology with proven records
 - From academia to industry

Deliver accurate & detailed flow measurements

Volume fraction

Mean & time-series

Dynamics

Flow pattern
Flow charateristics
Flow evolution

Tomography

In-situ fraction Entrainment Mixing/separation

3D flow

Space-time feature

A wide range of models for small and large labs

U Series

C Series

Ex Series

I Series

Multiphase flow introduction

Complex multiphase flows

• Not always as simple as we thought

Many parameters affect the flow behaviour

- Gas void fraction
- Gas superficial velocity
- Liquid superficial velocity
- Gas viscosity
- Liquid viscosity
- Gas density

- Liquid density
- Interfacial surface tension
- Temperature
- Pressure
- Liquid level
- Pipe inclination

Still unsuccessful in modelling flow regimes

Goal of this study

Apply machine learning to predict flow regime classification

Method 1

Training with large datasets from model simulations

Method 2

Training of image recognition from X-rays

Method 1 from training simulation results

Flow regime maps in gas-liquid flows

- The earliest flow regime map was written by Baker(1954).
- Many flow regime map alterations came, but one of the most significant was written by Taitel and Dukler(1976), based upon a two-fluid model.

 The main drawback is the method in the paper involves laborious hand calculations.

Plotting flow regime map

- To overcome this slow process of hand calculations, we can use computer programming
- From relating the key variables to one dependent variable (liquid level) and using two loops, one each for superficial gas/liquid velocity, a map was obtained.

Could Machine help us even more?

- What we have done in the previous slide is great in a sense we have saved a lot of time...
- Despite this, there is still room to improve...
- There was an opportunity to introduce a compact machine learning classification model upon the extracted flow regime map data.

K – Nearest Neighbour algorithm

- We want a simple classifier that can effectively deal with large amount of data
- K Nearest Neighbour algorithm fitted this bill nicely!
- How do we choose K??

Thankfully various sources indicate an optimum k value usually lies in the region of k = sqrt(n), where n is the total data points.

Comparison of ML vs Flow model

- The k-nearest neighbour classifier which was implemented was a success
- Accuracy achieved was around 98% across the entire dataset
- Run time was dramatically reduced
- From implementing a confusion matrix it was discovered that the classifier struggled with stratified wavy, it was +95% successful with the other regimes

Method 2 from training of X-ray images

Two results from X-ray measurements

- Measure flows by looking into X-ray attenuation
- Relies upon one phase being better at absorbing and scattering x-rays than the other

 X-ray images and holdups were used. One pair of images can be seen below here

Holdup time-series

Image training and recognition

Each regime is distinctive in its own way for its individual characteristics...

Image recognition and identification

- If we as humans can spot these characteristics, then we can build and train a machine to spot them too!
- For machine learning techniques in image recognition, convolutional neural networks are often cited as the best choice.

• They take image pixel data as input, process them via various hidden layers and output an image classification.

Network and Layers

Results

• From applying the total data set (1377 images for each) the testing accuracy for x-ray and holdup networks were 93% and 90% respectively.

• We use the confusion matrix like in the last section again to analyse which flow regimes the models dealt with better/worse.

I	-189	0	0	43	0 7
	0	241	0	0	44
	0	5	162	0	0
	4	0	0	256	0
	- 13	7	0	0	257

1 - Annular dispersed

2 – Large wave

3 – Slug flow

4 - Stratified smooth

5 – Stratified wavy

Success rates

Actual Cases

Γ232	Ü	Ü	Ü	0 7
0	285	0	0	0
0	0	167	0	0
0	0	0	260	0
L_{O}	0	0	0	277

լ189	0	0	43	0 7
0	241	0	0	44
0	5	162	0	0
4	0	0	256	0
13	7	0	0	257^{-1}

- 1 Annular dispersed
- 2 Large wave
- 3 Slug flow
- 4 Stratified smooth
- 5 Stratified wavy

Predictions

Looking into ways to optimise the model

- Alter the dataset slightly to make it more distinguished
 - Accuracy went up, 96% for the X-rays and 94% for the holdup models.

- This raised the testing accuracy in some cases (although not by noticeable margins, $^{\sim}1\%$)
- Couple all the image data, build a new dataset and train a new neural network

Train for both X-ray image and holdup time series

• Coupling the images led to additional image pre-processing and more pixel input data to the neural network.

Results from coupled training

- Whilst this seemed like a good idea initially, the testing accuracy using the full dataset was around 85%
- The cause for this decline in accuracy was concluded to be the coupled data was merely a summation of two sets of original data no new information.
- Coupling the two image sets ended up causing more noise.

Neural Network used	Model accuracy (±1%)		
X-ray (Entire data)	93		
X-ray (Distinguished)	96		
Holdups (Entire data)	90		
Holdups (Distinguished)	94		
Coupled (Entire data)	85		
Coupled (Distinguished)	92		

Conclusion Method 1

kNN classifier is effective when coupled to a two-fluid model

 The machine learning flow regime performance is entirely dependent on the initial model choice

 Applying a weighted kNN, using a different classifier and creating an even class distribution are prospects for the future work

Conclusion Method 2

- The image data along with convolutional neural networks provided a good method of evaluating flow regimes
- Future work should look into noise analysis and how they affect the regime attributes.
- Applying the image classification technique to different flow orientations/small diameter pipe flows would also be an interesting avenue to explore.
- The script for the neural network contained a 'predicted_proba' function.
- From changing the probability threshold, the model would be more likely to detect the presence of particular regimes

Thank you for your attention

