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* Uses of machine learning
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About Flow Capture®

e Founded in 2013

— Based in Norway and Germany
— Specialised in flow measurements and X-rays

 Committed to delivering an turn-key solution to oil
and gas industry

— Highly integrated system

* Advanced technology with proven records
— From academia to industry
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Deliver accurate & detailed flow measurements

Volume fraction
Interface Mean & time-series

_ ’ Wavelets
Dynamics

Flow pattern

Velocity & ﬂOW f|e|d Flow charateristics

Flow evolution

3D particle tracking
Tomography

In-situ fraction

R —_

/’fr‘/ En-tr.amment ‘
)>} g Mixing/separation
< /. P v L
s ,..-¢-> /
—~ % _adi
A /./%j/ 00 3D flow
& <~ 90 Space-time feature
= <10
~ 2 60
29/11/2019 www.flowcapture.com 4



A
o
' A wide range of models for small and large labs
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Mutiphase flowintroduction
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Complex multiphase flows

* Not always as simple as we thought

R —_

29/11/2019 www.flowcapture.com



Many parameters affect the flow behaviour

 (Gasvadfraction  Liqud density

» Gassauperficial velocity * Interfacial sufacetension
* Liqud superficial velocity * Tenperature

» (Gasviscodty * Pressure
 Liqudviscosity  Liquidlevel

* (Gasdengty * Hpeinclination

\ /4
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Still unsuccessful in modelling flow regimes
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Goal of this study

Apply machine learning to predict flow regime classification

Method 1
* Training with large datasets from model simulations

Method 2
* Training of image recognition from X-rays

-‘ —.
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Method 1 fromtraining sinmulation results
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Flow regime maps in gas-liquid flows
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Plotting flow regime map

v

* To overcome this slow process of hand calculations, we can use computer programming

* From relating the key variables to one dependent variable (liquid level) and using two

loops, one each for superficial gas/liquid velocity, a map was obtained.
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Could Machine help us even more?

 What we have done in the previous slide is great in a sense
we have saved a lot of time...

* Despite this, there is still room to improve...

* There was an opportunity to introduce a compact machine
learning classification model upon the extracted flow
regime map data.
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K — Nearest Neighbour algorithm

 We want a simple classifier that can
effectively deal with large amount of data

 K— Nearest Neighbour algorithm fitted this
bill nicely!

e How do we choose K??

* Thankfully various sources indicate an
optimum k value usually lies in the region of

\ / 4

k =sqgrt(n), where n is the total data points.
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Comparison of ML vs Flow model

* The k-nearest neighbour classifier which was
implemented was a success

e Accuracy achieved was around 98% across the
entire dataset

e Run time was dramatically reduced

* From implementing a confusion matrix it was
discovered that the classifier struggled with
stratified wavy, it was +95% successful with the
other regimes
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Method 2 fromtraining of X-ray images
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Two results from X-ray measurements

* Measure flows by looking into X-ray attenuation

* Relies upon one phase being better at absorbing
and scattering x-rays than the other

e X-ray images and holdups were used. One pair of
images can be seen below here

X-ray projection image Holdup time-series
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Image training and recognition

* Each regime is distinctive in its own way for its individual characteristics...
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Sug flow Stratified wavy
Sratified smooth Large wave
Annular dispersed
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Image recognition and identification

* If we as humans can spot these characteristics, then we can build and train a machine
to spot them too!

* For machine learning techniques in image recognition, convolutional neural networks
are often cited as the best choice.

* They take image pixel data as input, process them via various hidden layers and output
an image classification.
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Network and Layers

Input
layer

Hidden
layer
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Results

o

* From applying the total data set (1377 images for each) the testing accuracy for x-ray

and holdup networks were 93% and 90% respectively.

* We use the confusion matrix like in the last section again to analyse which flow regimes
the models dealt with better/worse.

0 43 0 7
0 0 44
162 O 0
0 256 O
0 0 257-

1 - Annular dispersed
2 - Large wave

3 -Sugflow

4 - Sratified smooth
5 - Stratified wavy
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Success rates

232 0 0 0 O- |
0 285 0 0 O ;’_ﬁf’;j&:\'fepemd
Actual Cases 0 0 167 0 0 3-Qug flow
0 0 0 260 0 4 - Sratified sroath
L0 0 o0 0 277 5 - Sratified wavy
189 0 0 43 0 -
0 241 0 0 44
0 5 162 0 0
4 0 0 256 0
13 7 0 0 257

Predictions
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Looking into ways to optimise the model

* Alter the dataset slightly to make it more distinguished
— Accuracy went up, 96% for the X-rays and 94% for the holdup models.

* Alter the hyperparameters in the neural network itself
— This raised the testing accuracy in some cases (although not by noticeable margins, ~1%)

* Couple all the image data, build a new dataset and train a new neural network
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Train for both X-ray image and holdup time series

* Coupling the images led to additional image pre-processing and more pixel input data
to the neural network.

+

o o
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v
Results from coupled training
| * Whilst this seemed like a good idea initially, the testing accuracy using the full dataset
was around 85%
* The cause for this decline in accuracy was concluded to be the coupled data was merely
a summation of two sets of original data — no new information.
\ * Coupling the two image sets ended up causing more noise.
X-ray (Entire data) 93
X-ray (Distinguished) 96
Holdups (Entire data) 90
Holdups (Distinguished) 94
Coupled (Entire data) 85
Coupled (Distinguished) 92
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Conclusion Method 1

* KNN classifier is effective when coupled to a two-fluid model

* The machine learning flow regime performance is entirely dependent on the initial
model choice

* Applying a weighted kNN, using a different classifier and creating an even class
distribution are prospects for the future work
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Conclusion Method 2

* The image data along with convolutional neural networks provided a good method of
evaluating flow regimes

* Future work should look into noise analysis and how they affect the regime attributes.

* Applying the image classification technique to different flow orientations/small
diameter pipe flows would also be an interesting avenue to explore.

* The script for the neural network contained a ‘predicted _proba’ function.

* From changing the probability threshold, the model would be more likely to detect the
presence of particular regimes
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Thank you for your attention
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