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MOTIVATION

Kozlov & Oniscenko (1982) showed that 
general ellipsoids can show chaotic 
motion in inviscid flow

Objectives:

• Can chaotic behaviour be seen in 
viscous flows using DNS

• Can chaotic dynamics be used to 
enhance mixing.
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MOTION OF ELLIPSOID IN A FLOW

Problem Set-up
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General Ellipsoid: 𝑎 ≠ 𝑏 ≠ 𝑐
Domain Scale: L = 512𝑎
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Chaotic motion only under conditions of non-
integrability of Kirchhoff’s equations (Kozlov & 
Oniscenko, Sov. Math. Dokl 1982)
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MOTION OF ELLIPSOID IN INVISCID 
FLOW

𝑳
𝑷 = 𝐼 𝐷

𝐷: 𝑀 ≜ ℳ 𝝎
𝐯

�̇� = 𝑳×𝝎 + 𝑷×𝐯 + 𝑻𝒔
�̇� = 𝑷×𝝎+ 𝑭𝒔

𝒒 = 𝑳, 𝑷

ℋ 𝒒 = I
5
𝒒 JℳKI𝒒

𝑳 – Angular Momentum 𝝎 – Angular Velocity

𝑷 – Linear Momentum 𝐯 – Linear Velocity
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THE LIMITS OF INTEGRABILITY

The Kirchhoff equations can be view as a Lie algebra, SE(3)

Casimir functions are:
𝐶I = 𝑷 J L; 𝐶5 = 𝑃 5

In the general case 𝐶5 ≠ 0

ℋrestricts system to a level set (coadjoint orbit)

For the equations to be integrable additional conversed quantity is required
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ELLIPSOID ORBITS IN INVISCID FLUID

Periodic Chaos
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RECURRENCE QUANTIFICATION 
ANALYSIS (RQA) OF ELLIPSOID MOTION

DET Determinism of the system.

𝐷𝐸𝑇 =
∑ℓTℓUVW
X ℓ𝑃(ℓ)
∑ℓTIX ℓ𝑃(ℓ)

The Lyapunov exponent and Rényi Entropy of the 
system encoded in recurrence plot.

𝐸𝑁𝑇𝑅 = − ]
ℓTℓUVW

X

𝑝 ℓ ln 𝑝 ℓ

𝜀

𝑅 𝑖, 𝑗 = d1 𝑖𝑓 𝐿g 𝑥i, 𝑥j ≤ 𝜀
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Recurrence Rate (RR)

𝑅𝑅 =
1
𝑁5 ]

i,jTI

X

𝑅(𝑖, 𝑗)
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ELLIPSOID ORBITS AT DIFFERENT 
ENERGY RATIOS

Periodic Orbit
𝐸 = 1 rs

rt
= 0.125

Chaotic Orbit
𝐸 = 20 rs

rt
= 8
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TIME DEPENDENT RQA ANALYSIS

Periodic Chaos
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UNDERSTANDING CHAOS

Energy Transfer Poincare Plots
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PARAMETRIC MAPS
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EFFECTS OF VISCOSITY ON ORBITS OF 
SYMMETRIC ELLIPSOIDS

Chaotic motion only under conditions of non-integrability 
of Kirchhoff’s equations (Kozlov & Oniscenko, Sov. Math. 
Dokl 1982). Vortex shedding breaks the symmetry of 
the system, and allows chaotic orbits
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VISCOSITY GRADIENTS AND MIXING

Passive tracers dynamics are identical to 
other viscous cases

Bodies move toward viscosity minima, this 
is consistent with work done by (Li, 
McKinley and Ardekani, 2015)

Viscosity gradient effects compete with 
geometry induced chaos
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MOTION OF MULTIPLE ELLIPSOID IN 
INVISCID FLOW

∇5𝜙 = 0

We know that the 𝜙 will have the form
𝜙 = ̇𝑞I𝜙I + ̇𝑞5𝜙5 +⋯+ ̇𝑞{𝜙{

The total energy of the fluid:

2𝑻 = −𝜌}𝜙
𝜕𝜙
𝜕 �𝑛

𝑑𝑆 = ]
i,jTI

{

2𝑨i,j ̇𝑞i ̇𝑞j

𝑨i,j = −𝜌}𝜙i
𝜕𝜙j
𝜕�𝒏



CORRELATION 
BETWEEN 
BODIES

o Correlations in the chaotic motion of two bodies

o Diagonal lines represent times of correlations 
and perpendicular lines present times of 
anticorrelation between bodies

o Further Investigation underway
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CONCLUSION & FUTURE WORK

Conclusion

Our GISS solver is capable to capture 
very complex motion patterns of solid-
fluid.

Parametric mapping of the systems 
supports trend found by (Aref & Jones, 
1993) 

Vortex Shedding allows for the 
development of chaotic orbits

Future Work

Investigate the enhancement to mixing 
caused by the chaotic tumbling ellipsoids

Extent Kirchhoff Equation to include 
multiple ellipsoids
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For your attention
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