Progress 100 Symposium and The Second ThermaSMART Annual Workshop 2 – 4 Dec 2019 – I²CNER Hall, Kyushu University, Fukuoka, Japan

Single Bubble Collapse at Audible Frequencies and High Amplitudes

D. Masiello¹, I. Tudela¹, R. Govindarajan², R. Nityananda³, and P. Valluri¹

¹The University of Edinburgh, School of Engineering, Edinburgh - United Kingdom

² International Centre for Theoretical Sciences, Bangalore - India

³ Azim Premji University, Bangalore - India

Engineering and Physical Sciences Research Council

Phenomenon and motivation

Figure 1. A) Schematic of the system; B) Bubble dynamics; C) Liquid pressure; D) Unexplored parameters space.

Governing equation

Bubble wall motion (Keller-Miksis equation with effect of bulk viscosity)

$$\left(1 - \frac{\dot{R}}{c_l}\right)R\ddot{R} + \frac{3}{2}\left(1 - \frac{\dot{R}}{3c_l}\right)\dot{R}^2 = \left(\frac{R}{\rho_l c_l} + \frac{\lambda_l + 2\mu_l}{\rho_l^2 c_l^2}\right)(\dot{p}_l - \dot{p}_{\infty}) + \left(1 + \frac{\dot{R}}{c_l}\right)(p_l - p_{\infty})$$

Gas temperature (quasi-equilibrium assumption)

$$\dot{T}_{g} = \frac{-T_{g} \frac{\partial p_{g}}{\partial T_{g}} dV + S\kappa_{g} \frac{\partial T_{g}}{\partial r}\Big|_{r=R} - S \sum_{i=1}^{N_{S}} \Psi_{i} \left[u_{i}^{0}(T_{g}) - u_{i}^{0}(T_{g}^{i})\right] - V \sum_{j=1}^{N_{R}} r_{j}^{\text{net}} \Delta^{r} u_{j}^{0}}{n_{TOT} \bar{c}_{vg}}$$

Non-equilibrium phase change (Hertz-Knudsen equation)

$$\dot{m} = \frac{\alpha}{\sqrt{2\pi\mathcal{R}}} \left(\frac{p_{sat}(T_{li})}{\sqrt{T_{li}}} - \frac{\Gamma x_{H_2O} p_g}{\sqrt{T_{gi}}} \right)$$

[1] R. Löfstedt, B. P. Barber, and S. J. Putterman, Physics of Fluids A: Fluid Dynamics 5, 2911 (1993).

Low vs. high frequency: the main collapse

Figure 3.

- A) Bubble radius dynamics at low and high frequency;
- B) Liquid and gas pressures during bubble expansion;
- C) Liquid and gas pressures at collapse.

Low vs. high frequency: the rebounds

Key aspects

- 1. Large bubble prevents viscosity and surface tension damping effect.
- 2. For same size, oscillations have same time scale regardless of driving frequency.

Figure 4. A) Inset of the rebounds following the main collapse. B) Dimensionless numbers evolution for each rebound.

Different dynamics

Figure 5. Division of the parametric space by typology of bubble dynamics within one acoustic cycle.

Gas phase chemistry

 $N_2, O_2, H_2O, Ar \longrightarrow H_2, H, O, OH, HO_2, H_2O_2, N, NH, NH_2, NH_3, NNH, NO, NO_2, N_2O, HNO$

GRI 3.0 combustion mechanism			• 3.5 ns	
			10^{10} - N ₂ H ₂ O	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 57 & \mathrm{NNH} + \mathrm{O}_2 \Longrightarrow \mathrm{HO}_2 + \mathrm{N}_2 \\ 58 & \mathrm{NNH} + \mathrm{O} \rightleftharpoons \mathrm{OH} + \mathrm{N}_2 \\ 59 & \mathrm{NNH} + \mathrm{O} \Longrightarrow \mathrm{NH} + \mathrm{NO} \\ 60 & \mathrm{NNH} + \mathrm{H} \Longrightarrow \mathrm{H}_2 + \mathrm{N}_2 \\ 61 & \mathrm{NNH} + \mathrm{OH} \rightleftharpoons \mathrm{H}_2 \mathrm{O} + \mathrm{N}_2 \\ 62 & \mathrm{H} + \mathrm{NO} + \mathrm{M} \rightleftharpoons \mathrm{HOO} + \mathrm{M} \\ \mathrm{H}_2 : 2, \mathrm{H}_2 \mathrm{O} : 6, \mathrm{Ar:} 0.625 \\ 63 & \mathrm{HNO} + \mathrm{O} \rightleftharpoons \mathrm{NO} + \mathrm{OH} \\ 64 & \mathrm{HNO} + \mathrm{H} \rightleftharpoons \mathrm{H}_2 + \mathrm{NO} \\ 65 & \mathrm{HNO} + \mathrm{OH} \rightleftharpoons \mathrm{NO} + \mathrm{H}_2 \mathrm{O} \\ 66 & \mathrm{HNO} + \mathrm{OI} \rightleftharpoons \mathrm{HO2} + \mathrm{NO} \\ 67 & \mathrm{NH}_3 + \mathrm{H} \rightleftharpoons \mathrm{HO2} + \mathrm{H2} \\ 68 & \mathrm{NH}_3 + \mathrm{OH} \rightleftharpoons \mathrm{NH}_2 + \mathrm{H2} \\ 69 & \mathrm{NH}_3 + \mathrm{OI} \rightleftharpoons \mathrm{NH}_2 + \mathrm{OH} \\ 70 & \mathrm{HO2} + \mathrm{OH} \rightleftharpoons \mathrm{H}_2 \mathrm{O} + \mathrm{O2} \\ \end{array} $	$ \begin{array}{c} 10^8 \\ 10^8 \\ 10^6 \\ 10^6 \\ 10^4 \\ 10^2 \\ 10^0 \\ 0.5974 \\ 0.59$	h_{2} h_{3} h_{2} h_{3} h_{2} h_{3} h_{3} h_{3} h_{4} h_{2} h_{2} h_{3} h_{3} h_{4} h_{1} h_{1} h_{2} h_{1} h_{2} h_{3} h_{3

6

Temperature and chemistry

A) Maximum temperature during one acoustic cycle

B) Number of OH radicals in the molecules at the end of the cycle

Figure 7. Maximum temperature and produced amount of hydroxyl radicals within one acoustic cycle in the explored parametric space.

Can we use low frequency sound in sonochemistry?

Figure 8. Change of acoustic field in bubbly water with size of propagating medium¹.

- Implementation of rectified diffusion in the model equations.
- Evaluation of Rayleigh-Taylor and parametric instabilities.

¹Louisnard, O., et al., 2015. Prediction of the acoustic and bubble fields in insonified freeze-drying vials. Ultrasonics sonochemistry, 26, pp.186-192.

9

Future work

Video 1.

Appearance of acoustic streamers in a 18 kHz acoustic standing wave.